



# Cetetherm Primary Tank

5 BAR

Thermal storage vessel for Primary side / 300-3000 litres

The Cetetherm Primary Tank is suitable to store large quantities of heated **primary** water from different heat sources such as boilers, hydraulic networks, solar heaters or any other heat recovery system. The Tank is designed for use in combination with a tap water system like Cetetherm AquaFirst, AquaEfficiency or AquaFlow/Store and also high efficient heat interface units, such as type Mini City.

## APPLICATIONS

The Primary Tank stores energy to generate hot primary water on demand in facilities where sudden high demands occur on a fairly regular basis such as:

- apartment blocks
- hospitals, retirement and nursing homes
- hotels
- schools
- leisure centres
- · any other collective building

#### BENEFITS

- Energy saving solution as reduces the boiler or network capacity
- Hygienic solution: no riks of legionella, even at low temperature thanks to the water being stored on the primary side
- Maximum hot water production thanks to its specific internal tube arrangement avoiding mixing of the cold water return loop with the stored hot water
- Easy handling thanks to 2 ring bolts on top of the Primary Tank
- Delivered with feet to facilitate the cold water inlet connection and emptying, and to maximize the total available volume
- Insulation standard 100mm easy to remove and refit
- Reduces the risk of lime scaling if combined with the 3-port mixing valve of the AquaFirst, AquaEfficiency or AquaFlow/Store unit, especially if combined with thermal solar installation
- Additional connections to optimize condensation and the heating of boilers
- Low total cost of ownership

## CHARASTERISTICS

| Volumes                              | 300 to 3000 litres                                                                     |  |  |  |  |  |
|--------------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|--|
| Material                             | Carbon steel, conform PED 2014/68/EU                                                   |  |  |  |  |  |
| Outer coating                        | Painted                                                                                |  |  |  |  |  |
|                                      | MI: 100mm polyester fiber covered with PVC jacket, European fireclass B                |  |  |  |  |  |
| Insulation                           | M0: 100mm rockwool cladded with aluminium metal plate, European fireclass A            |  |  |  |  |  |
| Maximum operation temperature        | 99°C                                                                                   |  |  |  |  |  |
| Maximum operating pressure bar gauge | 5 bar g                                                                                |  |  |  |  |  |
|                                      | All connections are female threads                                                     |  |  |  |  |  |
| Connections                          | All 1/2" connections are dedicated for additional instruments like temperature sensors |  |  |  |  |  |



# FLOWCHART AND WORKING PRINCIPLE



In the tap water system (G), energy is exchanged through a heat exchanger from the primary (I) to the DHW side (J). On the primary side, the DHW unit has to be fed by a heating source that can be provided for example by a local boiler (E) and the Cetetherm Primary Tank 5 bar. In the case of the Primary Tank, the required DHW unit primary flow rate comes from the top of the Primary Vessel. This flow rate (H) is a combination of the flow rate coming from the bottom of the vessel (F) and the additional flow rate (A) coming from the boiler. This storage tank ensures that DHW primary flowrate supply is met during peak demand periods.



## COMBITHERM SOLUTION



## WHY COMBITHERM ?

Combitherm optimises the advantages of both instantaneous and semi-instantaneous, providing

#### Haximum hygiene

secondary storage is avoided, along with the risk of legionella, as the thermal capacity is transferred to the primary side.

## Greater cost-effectiveness

a greater return of investment is generated, by allowing reduced power from the primary source.

## Full suitability

the solution is suitable for all domestic hot water loops and high circulation flow rates, like in hospitals and other collective applications.

## Easy maintenance E

periodic maintenance is not needed at the secondary side, like storage tank and sanitary charging pumps.

## $\oplus$ Optimal reliability and robustness

the tank charging pump is located on the heating side, so there is no risk of scaling the recycling pump or corrosion.

## $\oplus$ Thermal efficiency

Combitherm significantly reduces return temperatures.



# **DRAWING & SELECTION TABLE**





| Rp 2"    |
|----------|
| Rp 1/2"  |
| Rp 1"1/2 |

1.

2.

3.

| Volume<br>(L) | Insulation<br>(100 mm) | Dimensions ** (mm) |           |       |     |      |      | ErP       | Heat loss coefficient | Weight |                 |               |
|---------------|------------------------|--------------------|-----------|-------|-----|------|------|-----------|-----------------------|--------|-----------------|---------------|
|               |                        | а                  |           |       | е   | DI   | D2   | class *** | UA (W/K)              | (kg)   | Article Numbers |               |
| 300           | MI                     | 1410               | 1150      | 458   | 200 | 630  | 830  | в         | 1.35                  | 68     | AQTVP030M1100   |               |
| 500           | MI                     | 2012               | 1753      | 464   | 205 | 630  | 830  |           | 1.30                  | 96     | AQTVP050M1100   |               |
| 750           | MI                     | 1907               | 1600      | 500   | 193 | 790  | 990  | с         | 1.60                  | 155    | AQTVP075M1100   |               |
| 750           | MO                     |                    |           |       |     |      |      |           | 2.15                  | 190    | AQTVP075M0100   |               |
| 1000          | MI                     | 2260               | 2260 1953 | 500   | 107 | 790  | 990  |           | 1.90                  | 175    | AQTVP100M1100   |               |
| 1000          | мо                     |                    |           | 500   | 193 |      |      |           | 2.52                  | 220    | AQTVP100M0100   |               |
| 1500          | MI                     | 2083               | 1699      | 599   | 212 | 1100 | 1300 |           | 2.15                  | 349    | AQTVP150M1100   |               |
| 1500          | MO                     |                    |           |       |     |      |      |           | 2.85                  | 433    | AQTVP150M0100   |               |
| 2000          | MI                     | 225/               | 1005      | 500   | 212 | 1100 | 1700 |           | 2.2                   | 407    | AQTVP200M1100   |               |
| 2000          | MO                     | 2274               | 1887      | / 599 | 212 | 1100 | 1300 |           | 2.89                  | 481    | AQTVP200M0100   |               |
| 2500          | MI                     | 2145               | 2145 1679 | 679   | 214 | 1400 | 1600 |           | 2.8                   | 414    | AQTVP250M1100   |               |
| 2500          | мо                     |                    |           |       |     |      |      |           | 3.7                   | 501    | AQTVP250M0100   |               |
| 3000          | MI                     | 2274               |           |       |     |      |      |           | E                     | 3.2    | 516             | AQTVP300M1100 |
| 3000          | MO                     |                    | 1809      | 679   | 214 | 1400 | 1600 |           | 4.10                  | 603    | AQTVP300M0100   |               |

\* 10 bar on request

\*\* Dimensions are provided for information purposes only. Please refer to drawings.

\*\*\* EN 12897 : 2006

DI = External diameter, excluding insulation D2 = External diameter, inclusing insulation

| Primary tank options                                  | Power (kW) | Article Numbers |
|-------------------------------------------------------|------------|-----------------|
| Electric top-up kit for 230 V+T mono primary tank     | 3          | KITVP3KW        |
| Electric top-up kit for TRI+N+T primary tank          | 6          | KITVP6KW        |
| Electric top-up kit for TRI+N+T primary tank          | 9          | KITVP9KW        |
| Electric top-up kit for primary tank TRI+N+T vol>500L | 12         | KITVP12KW       |

Cetetherm reserves the right to change specifications without prior notification